De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Differentiatievergelijking oplossen tot een e macht

Dag ik ben al een week bezig met het oplossen van de volgende vergelijking en ik kom er maar niet uit.

dw/dt+ k^2*w/j*Ra = K*uklem/j*Ra Ik wil deze functie graag oplossen tot een e macht met een tijdsconstante.

Ik heb deze vergelijking geprobeerd op te lossen met laplace alleen ik krijg het niet voor elkaar om er dan ergens 1/S+a uit te halen.

Zouden jullie me hiermee opweg kunnen helpen hoeft niet persee met lapalce maar leek me wel handig.
met vriendelijke groeten

jarno
Student hbo - zondag 12 maart 2006

Antwoord

Het kan ook op de "gewone" manier. Je DV is van de vorm

dy/dt + ay = b

met a en b constanten. Vermenigvuldig beide leden met e^(at)

e^(at).dy/dt + e^(at).ay = b.e^(at)

Het linkerlid is nu precies de afgeleide van e^(at).y zodat

d/dt[e^(at).y] = b.e^(at)
e^(at).y = (b/a).e^(at) + C
y = b/a + C.e^(-at)

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zondag 12 maart 2006
 Re: Differentiatievergelijking oplossen tot een e macht 



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3