De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Kettingbreuken

Hallo,
Wij werken nu met kettingbreuken. Maar zou u mij kunnen uitleggen wat nou eigenlijk het belang van kettingbreuken is. Waarom is het handiger als je sommige decimalen in kettingbreuken omzet?
Alvast bedankt

anonie
Leerling bovenbouw havo-vwo - vrijdag 24 februari 2006

Antwoord

Het belang van kettingbreuken?
The Dutch mathematician and astronomer Christiaan Huygens (1629-1695) was the first to demonstrate a practical application of continued fractions.[6][5] He wrote a paper explaining how to use the convergents of a continued fraction to find the best rational approximations for gear ratios. These approximations enabled him to pick the gears with the correct number of teeth. His work was motivated impart by his desire to build a mechanical planetarium.

(...)

To give an example of their versatility, a recent paper by Rob Corless examined the connection between continued fractions and chaos theory. Continued fractions have also been utilized within computer algorithms for computing rational approximations to real numbers, as well as solving indeterminate equations.
Kijk dat zijn toch leuke dingen voor de mensen...

Zie de link bij Repeterende vergelijkingen.

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
donderdag 2 maart 2006



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3