|
|
\require{AMSmath}
Re: Meetkplaats complex getal
IK, vrees toch, Tom, dat ik de oplossing van Re(z-1)(z+1)=0 niet kan oplossen.IK volg U wel dat het art gument hiet een tangens van 90° en dus niet gedefinieërd,dus x=o (zogenaamde nulnoemer y/x) Met z bedoel jij wat ik C toch nioem, is het niet? Nog een duwtje aub Groeten, Rik
lemmen
Ouder - donderdag 15 december 2005
Antwoord
Beste Rik,
Mijn z was inderdaad jouw c. Laten we z (of dus c) voluit schrijven in reële en imaginaire componenten: z = x+yi. We hebben dan dat (z-1)/(z+1) = (x+yi-1)/(x+yi+1). Maak de noemer nu reëel door teller en noemer te vermenigvuldigen met de geconjugeerde van de noemer (dus gelijk reëel deel, tegengesteld imaginair deel). Nu kan je eenvoudig splitsen in het reëel en imaginair deel, stel het reëel deel gelijk aan 0 en haal er een verband tussen x en y uit.
mvg, Tom
|
Vragen naar aanleiding van dit antwoord? Klik rechts..!
donderdag 15 december 2005
|
|
home |
vandaag |
bijzonder |
gastenboek |
statistieken |
wie is wie? |
verhalen |
colofon
©2001-2024 WisFaq - versie 3
|