De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Bereken de eindwaarde

hi ik heb een vraagje en ik hoop dat jullie mij kunnen helpen
iemand heeft op 15 januari van de jaren 1972 t/m 1992 een bedrag van euro 1000,-- op een spaarrekening gezet
hij zette voorts op de vijftiende van de andere maanden van de jaren 1972 t/m 1992 steeds een bedrag van euro 100,00 op dezelfde apaarrekening

bereken de eindwaarde van die spaarrekening op 15 januari 1993 uitgaande dat de bank in de genoemde periode 6,4% samengestelde interest per jaar vergoedde

mijn berekening
1000*1,00518* (1,00518)^20/1,00518 = 108,86
100*1,00518* (1,00518)^240/1,00518 = 345,55
de oplossing schijn te zijn 92053,36 wat ook zal kloppen
de vraag is wat ik dan verkeerd doe alles denk ik

ok nog van harte bedankt

ellen
Student hbo - dinsdag 22 november 2005

Antwoord

Opmerking
De verschuiving van 15 dagen kun je negeren en dat heb je ook gedaan zo te zien.
Jij rekent met 20 jaar en 240 maanden. Dit moet zijn 21 jaar en 252 jaar. Let hier altijd goed op gebruik eventueel een tijdbalk om dergelijke fouten te voorkomen.
De maandrente heb je goed uitgerekend

Dan nu de uitwerking
Als eerste de 1000 euro per jaar

Dit is een rij die als volgt verloopt

K= 1000*1.064^21+1000*1.064^20+..+1000*1.064^2+1000*1.064^1

K= 1000*(1.064^21+1.064^20+..+1.064^2+1.064^1)

Ga maar na over je eerste storting krijg je 21 jaar rente over de volgende 20 jaar en over de laatste 1 jaar.

Vermenigvuldig je nu beide leden met 1.064 dan krijg je:

1.064K = 1000*(1.064^22+1.064^21+..+1.064^3+1.064^2)

Dit is makkelijk want je ziet nu dat in het rechterlid beide gemeenschappelijk hebben het stuk van 21e macht tot de 2e macht. Als je beide nu van elkaar afhaalt wordt de formule een stuk eenvoudiger.

1.064K-K = 1000* (1.064^22-1.064)
0.064K = 1000* (1.064^22-1.064)
K1 = 1000 * ((1.064^22-1.064)/0.064)

Analoog aan deze oplossing kun je nu de maandelijkse stortingen uitrekenen. (eerst ga ik ervan uit dat je in januari ook stort en die haal ik er later weer af).

inclusief januari
K2 = 100 * ((1.005183^253-1.005183)/0.005183)

alleen januari
K3 = 100 * ((1.064^22-1.064)/0.064)

Dan vervolgens K1+K2-K3

mm
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zaterdag 26 november 2005
 Re: Bereken de eindwaarde  



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3