De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Inhomogene tweede orde DV

Kan iemand mij misschien helpen met het oplossen van de volgende DV?

y(t)'' + y(t) = t3 + 6t - 2

Ik meen dat je eerst een algemene oplossing moet zoeken voor de homogene vergelijking. Om vervolgens een particuliere oplossing te vinden. Maar dit laatste lukt me niet, ik geloof dat ik nog niet helemaal begrijp hoe je dat moet doen. Misschien dat het uitgelegd kan worden door middel van dit voorbeeld?

Daarnaast had ik nog een vraag. Ik moest de DV

t3y(t)'' + ty(t)'- y

oplossen. Aangezien y(t)=t voldoet heb ik met variatie van constante geprobeerd de algemene oplossing te vinden. Maar ik kreeg hierbij

c(t)''t2 + 2c'(t) + c'

In deze formule kun je c'(t) ook nog door bijvoorbeeld Q(t) vervangen maar daarmee kom ik er nog niet uit. Wat moet ik nu doen? (of heb ik eerder al wat fout gedaan?)

Nou ja, ik hoop dat jullie me kunnen helpen.
Alvast bedankt,
Harm Jan

Harm J
Student universiteit - dinsdag 1 november 2005

Antwoord

dag Harm Jan,

Wat betreft de eerste vergelijking: je beschrijft inderdaad de juiste methode.
Voor de particuliere oplossing zoek je een functie in de vorm van het rechterlid van de vergelijking, en al zijn afgeleiden.
Omdat er in het rechterlid een derdegraadsfunctie staat, kies je voor je particuliere oplossing dus:
y = A·t3 + B·t2 + C·t + D.
Hiervan ga je de afgeleide en de tweede afgeleide berekenen, dus:
y'' = 6A·t + 2B
Nu vul je deze twee (dus y'' en y) in de oorspronkelijke vergelijking in:
6A·t + 2B + A·t3 + B·t2 + C·t + D º t3 + 6t - 2
Hier staat een identiteit: voor elke waarde van t moet links en rechts dezelfde waarde staan.
Dat betekent, dat de coëfficiënten voor de verschillende machten van t links en rechts aan elkaar gelijk moeten zijn.
Dus:
A = 1
B = 0
6A + C = 6
2B + D = -2
Hiermee heb je je particuliere oplossing gevonden.
Wat de tweede vergelijking betreft:
Er staat geen rechterlid bij. Betekent dit dat dit 0 moet zijn?

groet,

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
woensdag 2 november 2005
 Inhomogene tweede orde DV 



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3