|
|
\require{AMSmath}
Stationaire punten en Multiplicatorenmethode
Hallo, Mijn vraag is: Gegeven is de volgende functie: f(x,y) = (x-1)(x2+y2-2x) Bepaal de stationaire punten van f en geef van elk stationair punt aan of het een minimum, een maximum of zadelpunt is. Bepaal m.b.v. de multiplicatormethode van Lagrange de extremen van f onder de nevenvoorwaarde x2+y2=4. In welk van deze extremen wordt een maximum en in welke een minimum van f op de cirkel x2+y2=4 aangenomen? (N.B.: De nevenvoorwaarde is een begrensd en gesloten gebied) ____________________________________________ D=f2xy-fxx·fyy locaal maximum als 1) stationair 2) D 0 3) fxx 0 locaal minimum als 1) stationair 2) D 0 3) fxx 0 geen locaal extreem: D 0 (zadelpunt) onbeslist: D= 0 Methode Lagrangemultiplicatoren: d(f+l·g)= (¶f/¶x + l·¶g/¶x)·dx + (¶f/¶y + l·¶g/¶y)·dy = 0 Hier is l een hulp-parameter gebruikt om de beide termen hierboven nul te krijgen. Bij voorbaat dank, MvG, Peter.
Peter
Student hbo - donderdag 20 oktober 2005
Antwoord
Beste Peter, Je geeft netjes de hele theoretische achtergrond en dat is erg vriendelijk, maar die kennen wij ook wel We zijn eigenlijk meer geïnteresseerd in jouw werk, wat je al geprobeerd hebt of waar je vastzit, gewoon huiswerk maken doen we namelijk niet - wel verderhelpen. Het bepalen van de stationaire punten doe je door de gradiënt gelijk te stellen aan 0, dus grad(f) = Ñf = 0. Dit geeft een stelsel van 2 vergelijkingen, de partiële afgeleide naar x en de partiële afgeleide naar y, beiden gelijkgesteld aan 0. Alle oplossingen hiervan zijn de stationaire punten. Hoe je moet controleren of je te maken hebt met een extremum (max/min) of niet heb je eigenlijk zelf al uitgelegd, dus nu kan je denk ik wel verder. Lukt het niet, laat dan even zien waar je vastzit. mvg, Tom
|
Vragen naar aanleiding van dit antwoord? Klik rechts..!
donderdag 20 oktober 2005
|
|
home |
vandaag |
bijzonder |
gastenboek |
statistieken |
wie is wie? |
verhalen |
colofon
©2001-2024 WisFaq - versie 3
|