De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Meetkundige plaats

Hallo wisfaq,
Graag wat uitleg over volgend probleem.Ik geraak er niet uit!
Neem een scherphoekige driehoek ABC die niet gelijkzijdig is en waarbij|BC| de kleinste zijde is.Wat is de meetkundige plaats van een inwendig punt P waarvoor geldt dat de som van de afstanden van P tot de zijden constant is.
Graag een oplossing aub,als het kan.
Groeten

lemmen
Ouder - woensdag 12 oktober 2005

Antwoord

dag

Ik zal je een eindje op weg helpen.
Noem de lengtes van de zijden van de driehoek a, b en c (op de voor de hand liggende manier).
Dan volgt uit het gegeven, dat a hiervan de kleinste is.
Neem nu een punt P in het inwendige van de driehoek.
Noem pa de afstand van P tot BC
Noem pb de afstand van P tot CA
Noem pc de afstand van P tot AB
Kun je nu aantonen dat a·pa + b·pb + c·pc gelijk is aan tweemaal de oppervlakte van driehoek ABC?
Een dergelijke formule geldt voor elk ander punt in het inwendige.
Neem nu een punt Q met dezelfde afstandensom als P.
Kun je aantonen dat (b-a)·qb + (c-a)·qc een constante is?
Kun je daarmee de meetkundige plaats vinden?
succes,

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
donderdag 13 oktober 2005
 Re: Meetkundige plaats 



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3