De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Probleem met tekenschema van de afgeleiden van goniometrische functies (verloop)

Hallo!

Ik heb een probleem om het tekenschema van een goniometrische functie op te stellen.
vb. f(x)= sin2x + 2 cosx
Het dom van f, de periode, de nulpunten van f en de afgeleiden f'(x) en f''(x) kan ik berekenen.
Als ik nu een tekenschema maak, hoe weet ik dan dat de fucntie stijgt of daalt over een bepaald interval?
Wat ik al gevonden heb:
f'(x)= -4sin2x - 2sinx +2
f''(x)= -2cosx (4sinx + 1)

x o p/6 5p/6 3p/2 2p

f'(x) ? ? 0 ? 0 ? 0 ? ?
f(x) Hier heb ik reeds de waarden berekent, maar waar stijgt of daalt de functie?

Wat moet er op de plaats van de ?'s komen? + of - ?
HOE WEET IK DAT? HOE VIND IK DAT, AUB HELP!!


Elke S
3de graad ASO - zondag 25 september 2005

Antwoord

Hallo Elke

Je eerste afgeleide kun je beschouwen als een vierkantsvergelijking in sinx.
De nulpunten zijn
sinx = -1 (1) en
sinx = 1/2 (2)
Uit (1) volgt dat x = 3p/2 en dit is dus een dubbel nulpunt, dus geen tekenverandeling.
Uit (2) volgt dat x = p/6 en x = 5p/6, dit zijn twee enkelvoudige nulpunten met dus een tekenverandering.
Deze nulpunten had je dus ook correct gevonden.

We onderzoeken nu het teken.
Als x = 0 is ook sinx = 0 en is de afgeleide gelijk aan 2, dus positief.
Bij de (enkelvoudige) nulpunten moet je van teken veranderen, dus
van 0 tot p/6 is de afgeleide positief
van p/6 tot 5p/6 is de afgeleide negatief
van 5p/6 tot 3p/2 is ze positief
van 3p/2 tot 2p blijft ze positief want 3p/2 is een dubbel nulpunt

Je kunt ook als volgt redeneren:
De afgeleide is ook te schrijven als -2.(sinx + 1).(2sinx - 1)
sinx + 1 is steeds positief, behalve als x = 3p/2, dan is sinx + 1 = 0
Bepaal nu het teken van 2sinx - 1
Het teken van de afgeleide is het tegengestelde hiervan omwille van de factor -2

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zondag 25 september 2005



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3