De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Bewijs dat 2 rechten elkaar kruisen

Hallo, ik vraag me af hoe dit te bewijzen

Gegeven zijn 2 vlakken die elkaar snijden, neem in elk van de 2vlakken een rechte die de snijlijn snijd, de 2 rechten snijden 2 verschillende punten.

Toon aan dat deze 2rechten elkaar kruisen.

Hoe dit aanpakken?

wn
3de graad ASO - zondag 5 juni 2005

Antwoord

Gewoon beginnen redeneren, vaak werkt het goed om uit het ongerijmde te proberen:

Gegeven: De twee gegeven vlakken alfa en beta snijden in een rechte, de snijlijn L. Die rechte bevat de enige gemeenschappelijke punten van die twee vlakken. Neem een rechte X in alfa, die niet evenwijdig is met de L, noem het snijpunt x, Neem een andere rechte Y, in beta, niet evenwijdig aan L, noem het snijpunt met L y.


Bewijs: We tonen eerst aan dat X en Y geen snijpunt kunnen hebben. x en y mogen door het gegeven niet samenvallen. Stel dan X en Y toch een snijpunt zouden hebben (ongerijmd), dan moet dat snijpunt zowel in alfa als in beta liggen, dus op de rechte L, maar dat kan niet want beide rechten snijden L op een andere plaats (in x en in y). Dus X en Y hebben geen snijpunt.

Maar misschien kunnen ze nog evenwijdig zijn, want dat is ook niet kruisend.
We zullen aantonen dat als X en Y evenwijdig zijn, dat beide rechten ook evenwijdig zijn met L, wat niet kan want er zijn snijpunten ondersteld.

Stel dat X en Y evenwijdig zijn (en beiden verschillend van L) en respectievelijk in alfa en beta liggen, en alsnog L snijden (respectievelijk in x en y, verschillende punten want X en Y zijn evenwijdig ondersteld in het bewijs, we zullen tot een strijdigheid komen).
Elke rechte evenwijdig met Y is ook evenwijdig aan X (want X is evenwijdig aan Y). Beschouw de rechte Z door x evenwijdig aan Y, aangezien x op X ligt moet X=Z, maar Z ligt in beta (doordat Z evenwijdig is met Y, een rechte uit beta, en een punt bevat van beta, nl x) en X ligt in alfa, Dus X=L en we hadden X niet gelijk aan L verondersteld. Een strijdigheid, waarmee is aangetoond dat X en Y niet evenwijdig zijn.



Koen


Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zondag 5 juni 2005



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3