De digitale vraagbaak voor het wiskundeonderwijshome | vandaag | gisteren | bijzonder | gastenboek | wie is wie? | verhalen | contact |
||||||||||||||||||
|
\require{AMSmath}
Extreme spreidingBij het berekenen van een steekproefgrootte voor binomiale verdeling met de standaard formule is mij opgevallen dat bij een kleine spreiding de steekproefomvang ook enorm afneemt. Als bijvoorbeeld het aantal positieve responders (bij onderzoek naar medicijnen) maar 2 % geeft de formule een zeer kleine steekproef aan. AntwoordUiteraard moet die steekproef ook veel groter worden. Kijk, wanneer je een vaste afwijking van 1% kiest zal de formule bij 2% positieve respondenten inderdaad een kleinere waarde opleveren dan bij 30% positieve resondenten. Maar er speelt nog iets anders mee. Een fout van 1% op 30% is nog wel acceptabel. Een absolute fout van 1% op een waarde van 2% (relatief zeer grote afwijking) is dat zeker niet meer. Dat betekent dat je bij een aantal positieve respondenten rond de 2% moet gaan rekenen met (absolute) foutmarges van iets van 0,1% en dat levert (in vergelijking met 1%) dan wel een grotere benodigde steekproef op.
home | vandaag | bijzonder | gastenboek | statistieken | wie is wie? | verhalen | colofon ©2001-2024 WisFaq - versie 3
|