De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Inhomogene DV 2de orde

hoi ik heb een vraag wat ik in de 1ste jaar heb gedaan maar kom effe niet niet dit is de DV:

y''+4y=4x2+4x

hoe zou dit moeten? alles apart of?

want ik kom uit op Yh=Ae-2x+Ae+2x

wat wordt nu Yp vraag ik me af. moet ik allebeide rechts termen van DV appart doen voor Yp of is er iets anders?

ik dacht aan allebeide apart doen en dan strax bij elkaar optellen, maar ik kan het niet nakijken dus weet niet of het goed is, hmmm?!?!?!?!

alvast TNX

Bhstud
Student universiteit - donderdag 2 juni 2005

Antwoord

Hallo,

Je homogene oplossing is correct, de volledige oplossing wordt dan gegeven door yh+yp

Om een particuliere oplossing te vinden kan je "variatie van de constanten" toepassen maar dat is hier niet echt nodig omdat je een bijzonder rechterlid hebt. Je kan met andere woorden zelf een 'voorstel' doen dat hier van de vorm Ax2+Bx+C zal zijn.

Leidt deze uitdrukking twee keer af en stop de gevonden y en y'' in de oorspronkelijke vergelijking. Door de coëfficiënten nu te identificeren volgens machten van x kan je ze eenvoudig bepalen.

mvg,
Tom

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
donderdag 2 juni 2005



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3