De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Snijpunt twee goniometrische functies

Bij het afgelopen VWO wiskunde B examen (oude stijl) was er vraag waar ik niet geheel uitkwam.

Gegeven f(x)= (1/cos2x)-1 en g(x)= 4sin2x

Van deze twee functies moet het snijpunt bepaald
met hierbij 0 < x <.5

De oplossing zover ik hem heb:

(1/cos2x)-1 = 4sin2x
(1/cos2x)-1 = 4-4cos2x
1/cos2x = 5-4cos2x
5cos2x-4cos^4 = 1
4cos^4-5cos2x+1 = 0

Hierna loop ik vast. Volgens het antwoordmodel klopt de laatste regel. Ik ga er dus vanuit dat het ik het tot hier toe goed gedaan heb. De volgende regel in het antwoord model is

cos2x=1 of cos2x=¼
in a geldt x = ½

Ik zie niet hoe men op bovenstaande is gekomen. Zie ik een reken regel over het hoofd, of zie ik een bepaalde vereenvoudiging niet?

Alvast bedankt voor de hulp!

Jesse

Jesse
Leerling bovenbouw havo-vwo - zondag 7 juli 2002

Antwoord

Je zat al heel warm!

ga eens uit van je laatste regel
4cos4x - 5cos2x + 1 = 0
en stel eens dat y=cos2x

dan staat er dus:

4y2 - 5y + 1 = 0
en dit is een "doodordinaire" vierkantsvergelijking, op te lossen mbv de abc-formule.

y1,2 = (-b±D)/2a
= (5 ± 3)/8
Þ y1=1 Ú y2

ofwel cos2x=1 Ú cos2x=¼ Þ
cosx=±1 Ú cosx=±½

en omdat het domein is <0, /2>, is
cosx=±1 alsook cosx=-½ géén optie.
op dit domein is er alleen een oplossing te vinden voor cosx=+½, dus x= /3

groeten,
martijn

mg
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zondag 7 juli 2002



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3