De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Logaritme

Hey,
ik kom niet uit deze sommen, misschien kunnen jullie me helpen

(die 5 die voor de log staat hoort hoog te staan)
x.5log(x-3)=2x

x.3^x=x (ik weet wel dat x=0 want 3^0=1, maar hoe verklaar ik dit)

Alvast bdankt

Marco
Leerling bovenbouw havo-vwo - dinsdag 2 juli 2002

Antwoord

Ik begin met je laatste opmerking
x=0 is inderdaad een oplossing want 0´3^0 = 0´1=0
Daarmee ben je er niet, want er zijn (misschien) meer oplossingen
Als x¹0 kun je links en rechts door x delen
Je krijgt dan 3^x=1 Dit heeft ook een oplossing, "toevallig" ook 0; Dus x=0 is de enige oplossing
Eigenlijk is het beter te spreken over twee samevallende oplossingen. Dit lijkt flauw maar als je de grafieken laat tekenen zie je dat de grafiek van y=x´3^x raakt aan y=x. Een raakpunt kun je zien al twee samenevallende snijpunten

Nu de eerste opgave: x.5log(x-3)=2x
Op het eerste gezicht lijkt x=0 ook hier een oplossing
Echter invulen geeft 0.5log(-3) = 0 en 5log(-3) bestaat niet
Dus die oplossing vervalt
Omdat we zeker weten dat x¹0 (immers x>3 anders bestaat de log niet) kunen links en rechts door x delen:
5log(x-3) =2
Als je weet wat de betekenis van log is is dit een makkie:
x-3 =52 enz.

gk
Vragen naar aanleiding van dit antwoord? Klik rechts..!
dinsdag 2 juli 2002



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3