De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Asymptoten

De functie f(x)=x2+ax+b/cx2+dx+e heeft een horizontale asymptoot y=1/2 voor x®±¥, twee verticale asymptoten x=-2 en x=1en twee nulpunten -3 en 2.
Bepaal de parameters a,b,c,d en e.
wij hebben alleen geleerd om een verticale , horizontale of schuine asymptoot te vinden. Nu moeten we ineens de parameters vinden , ik weet echt niet hoe ik dat moet doen

giovan
3de graad ASO - dinsdag 22 maart 2005

Antwoord

Dag Giovanni

Met je theorie over de asymptoten kun je deze parameters vinden.

De vergelijking van de horizontale asymptoot zoek je door de limiet van de functie voor x®±¥ te berekenen. Deze limiet stel je dan gelijk aan 1/2. Zo ken je al de waarde van c.

Als x=p een verticale asymptoot is weet je dat p een nulpunt is van de noemer. Dus met behulp van deze twee verticale asymptoten ken je twee nulpunten van de noemer en bereken je d en e.

Als q een nulpunt is van de functie weet je dat q een nulpunt is van de teller. Uit de twee gegeven nulpunten kun je dus a en b berekenen.

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
dinsdag 22 maart 2005
 Re: Asymptoten 



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3