De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Eindige groep

Hallo wisfaq,

Zij G een eindig voortgebrachte abelse groep waarin elk element eindige orde heeft.Ik wil bewijzen dat G eindig is.

Ik weet dat een eindige groep altijd eindig voortgebracht is en dat alle elementen in een eindige groep eindige orde hebben.
Maar het is gegeven dat G eindig voortgebracht is en dat elk element eindige orde heeft, dus dan volgt toch direct dat G eindig is?Ik begrijp niet hoe dan het bewijs moet gaan en waar je nodig hebt dat G abels is.

Groeten,
Viky

viky
Student hbo - zondag 20 februari 2005

Antwoord

Hallo, Viky.
Als G abels is en voortgebracht wordt door (bv) a,b,c,d met orden 5,6,11 en 12, dan weet je dat er hoogstens 5*6*11*12 elementen zijn, namelijk de elementen
arbsctdu met r=0,1,..,4, s=0,1,..,5, t=0,1,..10, u=0,1,..11.
Maar als G niet abels is, dan heb je bijvoorbeeld ook nog de elementen a2b3, a2b3a2b3, a2b3a2b3a2b3, a2b3a2b3a2b3a2b3, .... etc.; misschien zijn dat wel oneindig veel verschillende elementen?

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
maandag 21 februari 2005
 Re: Eindige groep 



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3