De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Primitiveren v/e breuk met exponentiele functie in teller en noemer

Hoe vind ik de integraal van [6/(1 + e^2x)e^2x] ??

Bedankt!

Evelie
3de graad ASO - woensdag 22 december 2004

Antwoord

Ik neem aan dat je het hebt over de functie (6e^2x)/(1+e^2x) omdat je schrijft over een exponentiële functie in teller en noemer.
Als je 1 + e^2x = t stelt krijg je 2.e^2x.dx = dt zodat 6.e^2xdx = 3dt.
Dit laatste is precies je teller, dus de hele integraal versimpelt nu tot de integraal van het quotiënt 3/(1+t) en dat is een stuk eenvoudiger dan hetgeen je aan het begin had!

MBL
Vragen naar aanleiding van dit antwoord? Klik rechts..!
woensdag 22 december 2004
 Re: Primitiveren v/e breuk met exponentiele functie in teller en noemer 



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3