De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Differentiëerbare functie

Hai Wisfaq

Stel f:® is een differentiëerbare functie, waarom is het zo dat als f n nulpunten heeft,
f´minstens n-1 nulpunten heeft?

Kunt U mij dit uitleggen?

Groetjes van Fleur

Fleur
Student hbo - zondag 21 november 2004

Antwoord

Dag Fleur

Als een functie differentieerbaar is, is ze ook continu. Dit wil zeggen dat ze geen onderbrekingen heeft, maar overal vloeiend verloopt.
Dit heeft ook voor gevolg dat ze tussen 2 nulpunten minstens één extremum (minimum of maximum) moet bereiken.
En een extremum heb je als de afgeleide gelijk is aan nul.

Op onderstaande grafiek zijn er 5 nulpunten. Er zijn dus 4 gebieden tussen de nulpunten. Er moeten dus minstens 4 extrema zijn en dus minstens 4 nulpunten van de afgeleide.

Algemeen : als er n nulpunten zijn, zijn er n-1 gebieden tussen de nulpunten en moeten er dus minstens n-1 extrema zijn. Dus moeten er dus ook minstens n-1 nulpunten zijn van de afgeleide.

q30284img1.gif

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zondag 21 november 2004



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3