|
|
\require{AMSmath}
Re: Breuksplitsen
Hallo Frank
Ik zie hier dat ik de verkeerde vraag bij m´n antwoorden hebt gezet.
De som moet zijnò x2+3x-4 -------- dv x2-2x-8 De som die ik eerder vroeg had ik zelf ook al goed gedaan.
Sorry voor het ongemak, maar zou je bovenstaande som ook nog even voor willen maken.
Alvast bedankt!
Niels
Niels
Student hbo - woensdag 12 mei 2004
Antwoord
Hoi Niels
deze breuk is geen echte gebroken rationale functie. De graad van de teller moet kleiner zijn dan de graad van de noemer. Dan pas mag je 'breuksplitsen' toepassen.
Deel dus eerst de teller door de noemer. Methode van de staartdeling of Euclidische deling (dezelfde als bij getallen hoor). x2 +3x -4 : x2 -2x -8 x2 -2x -8 ---------
(is hier moeilijk te flikken; snap je het?) De deler is: 1 De rest is: 5x+4 (de 2 regels boven de stippelijn van elkaar aftrekken). De onechte breuk is te splitsen in 1 + (5x+4)/(x2-2x-8). De integraal dus ook in òdx + ò(5x+4)dx/(x2-2x-8) . Zo krijg je al dat de 1ste integraal de x levert.
Nu pas 'breuksplitsen' toepassen op het 2de stuk. De noemer ontbinden in a(x-x1)(x-x2); waarbij x1 en x2 de nulpunten zijn van een 2de graadsfunctie. Discriminant: d=b2-4ac (hier 36); x1 = (-b+Öd)/(2a) dus 4; x2 zelfde maar met -Ö dus -2.
Je kan wel voort hé, want opnieuw éénvoudig geval (2 verschillende reële nulpunten). De tellers van de gesplitste breuken zijn idd. 4 en 1. Zo kom je aan de oplossing van het boek
Frank
|
Vragen naar aanleiding van dit antwoord? Klik rechts..!
woensdag 12 mei 2004
|
|
home |
vandaag |
bijzonder |
gastenboek |
statistieken |
wie is wie? |
verhalen |
colofon
©2001-2024 WisFaq - versie 3
|