De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Bewijs voor de formule van Euler

Ik moet de formule van Euler h-r+z is 2 bewijzen en ik heb dit als bewijz gevonden. volgens mijn leraar klopt het niet zijn jullie het daar mee eens. en ik kan ook geen andere bewijsen vinden van de formule alleen in het engels en dat begrijp ik niet.
Bewijs 1: Stel dat je in de kubus 'lijnen' bijtekent:
$<$h-(r+1) + (z+1) = 2
h - r - 1+ z+1 = 2
h – r + z = 2
Bewijs 2: Stel dat je in de kubus 'lijnen' weglaat
A (buitenste lijnen)
h-(r-1) + (z-1) = 2
h – r +1+z - 1=2
h – r + z = 2
B (binnenste lijnen)
(h-1)-(r-1)+z=2
h - 1-r+1+z = 2
h – r + z = 2

Ilona
Leerling bovenbouw havo-vwo - zaterdag 13 maart 2004

Antwoord

Als je iets wilt bewijzen dan zul je moeten bewijzen dat het voor ALLE (convexe) veelvlakken geldt. Dat betekent dat je niet als 'uitgangspunt' alleen de kubus kunt nemen, maar dat je moet laten zien dat je ALLE (convexe) veelvlakken kunt 'produceren'.

Gelukkig staan er op onderstaande website 17 verschillende bewijzen. Ondanks het Engels zou je dat toch op ideeën moeten kunnen brengen...

Ik heb zelf ooit een 'aanzet' tot een bewijs geschreven (nou geschreven... het is een vertaling!) van de formule van Euler. Zie Bewijs voor de formule van Euler.

Volgens mij lijkt dit laatste wel een beetje op jouw bewijs, dus helemaal fout is je bewijs (denk ik) niet, maar eerder onvolledig. Maar, lastig is het wel...

Met dank aan gt

Zie Seventeen Proofs of Euler's Formula

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
vrijdag 19 maart 2004



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3