|
|
\require{AMSmath}
Oplossen van complexe vergelijkingen
Schrijf in de a + bj-vorm:
z3 -1 = 0 en (z -2)3 = 27 Bij deze laatste liggen de oplossingen in een cirkel. Ik moet de straal en het middelpunt van deze circel geven.
Ik begrijp niet hoe ik moet beginnen met het aanpakken hiervan. Kunt u me hierbij helpen...?
Bas
Student hbo - donderdag 8 januari 2004
Antwoord
Het uitwerken zelf is een kleintje. Stel z=x+jy en werk uit. Denk daarbij aan de eigenschappen j2=-1, j3=-j etc... Die hele uitwerking heb je niet nodig om informatie over de bewuste cirkel te bekomen. |z-a| = R is de vergelijking van alle complexe getallen z die een afstand R van een complex getal a verwijderd zijn. In het complexe vlak stelt die vergelijking dus een cirkel voor met straal R en middelpunt (Re(a),Im(a)). In jouw geval volgt uit (z-2)3=27 dat |z-2|=3, dus een cirkel met straal 3 rond het punt (2,0).

|
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zaterdag 10 januari 2004
|
|
home |
vandaag |
bijzonder |
gastenboek |
statistieken |
wie is wie? |
verhalen |
colofon
©2001-2025 WisFaq - versie 3
|