|
|
\require{AMSmath}
Oppervlakte cirkel benaderen met Riemann-sommen
Ik heb een opdracht gekregen waar ik niet uitkom: Bereken het oppervlak van een cirkel met straal 10 cm op de volgende manieren:
a) Deel het oppervlak op in n ringen en laat zien dat voor het oppervlak van de i-de cirkel kan gelden: Si=2.pxi.Dx en stel de Riemann-som op.
b) Deel het cirkeloppervlak op in rechthoeken en stel de Riemann-som op voor de rechthoeken. Hint: x2+y2=102
Ik kom er niet uit kun jij me helpen????
Edwin
Student hbo - maandag 29 december 2003
Antwoord
Hoi,
Een paar tips moeten je op weg helpen:
a) Je hebt een cirkel met midden m en straal r=10cm. Je tekent met dit midden m n cirkels met straal ri=r.i/n met i=1..n. De afstand tussen 2 opeenvolgende cirkels is Dr=r/n. De oppervlakte tussen deze opeenvolgende cirkels kan je benaderen door DSn,i=2p.ri.Dr=2p.r.i/n.r/n. De oppervlakte van de cirkel benaderen we dan Sn=sum(DSn,i:i=1..n)=2pr2/n2.sum(i:i=1..n)=2pr2/n2.n.(n+1)/2=p.r2.(n+1)/n. Voor n®¥ komen de cirkels steeds dichter bij elkaar en benadert Sn de oppervlakte van de cirkel steeds beter: lim(Sn,n®¥)=p.r2.
b) Uit de vergelijking van de cirkel haal je de vergelijking van de bovenste boog: y=Ö(r2-x2). We bekijken het stuk in het eerste kwadrant en stellen dus een Riemann-som op voor 1/4 van de oppervlakte van de cirkel. Het interval [0,r] delen we ook hier weer in stukjes door de punten ri=r.i/n met i=1..n. Boven het interval [ri,ri+1] staat er stuk van de cirkel waarvan we de oppervlakte benaderen door een rechthoekje met hoogte yi=Ö(r2-ri2). De oppervlakte van dit rechthoekje is DSn,i=(ri+1-ri).Ö(r2-ri2)=r/n.Ö(r2-(r.i/n)2)=r2/n.Ö(1-(i/n)2). Het hele cirkelkwart benaderen we dan met Sn=sum(DSn,i:i=1..n)=r2/n.sum(Ö(1-(i/n)2),i:i=1..n). We moeten dus enkel nog bewijzen dat sum(Ö(1-(i/n)2):i=1..n)/n®p/4 wanneer n®¥. Maar eigenlijk was het voldoende de sommen op te stellen... Als je die limiet ook moet bewijzen, stuur je maar een reactie.
Groetjes, Johan
andros
|
Vragen naar aanleiding van dit antwoord? Klik rechts..!
dinsdag 30 december 2003
|
|
home |
vandaag |
bijzonder |
gastenboek |
statistieken |
wie is wie? |
verhalen |
colofon
©2001-2024 WisFaq - versie 3
|