De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

2e orde differentiaalvergelijking

hoe los je de volgende differentiaalvergelijking op?

x'(t)=n1·y(t)+f(t)
y'(t)=n2·x(t)

Vriendelijke groeten,

Kim

kim
Student hbo - vrijdag 12 december 2003

Antwoord

Je zou het als volgt kunnen aanpakken:
De tweede vergelijking kun je nog eens differentieren.
Dan krijg je: y''(t) = n2·x'(t)
Nu kun je hierin voor x'(t) het rechterlid van de eerste vergelijking substitueren:
y''(t) = n2·(n1·y(t) + f(t))
Dit is een lineaire 2e orde differentiaalvergelijking.
Hiervoor zijn standaard oplosmethodes.
Je vindt de homogene oplossing door de karakteristieke vergelijking:
l2 - n2·n1 = 0
op te lossen.
Indien n2·n1 positief is, komen er twee reële oplossingen uit.
De homogene oplossing is dan dus:
yh(t) = C1·exp(Ö(n2·n1)·t) + C2·exp(-Ö(n2·n1)·t)
De particuliere oplossing yp(t) zoek je in de vorm van f(t) en al zijn afgeleiden (methode van onbepaalde constanten). Vul deze yp(t) in in de differentiaalvergelijking en bereken de constanten.
Succes.
groet,

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zondag 14 december 2003



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3