|
|
\require{AMSmath}
Vergelijking met ongelijkheden
Ik heb de volgende vergelijking: 2/(x-1)(x-1)5. Ik dacht hem eenvoudig op te lossen door kruislings te vermenigvuldigen en dat verder uit te werken: 2(x-1)·5 Û25x-5Û75xÛx7/5
echter het gegeven antwoord komt niet overeen met mijn antwoord. Maak ik een denkfout, of is het gegeven antwoord incorrect.
Michie
Student universiteit - donderdag 9 oktober 2003
Antwoord
Je bedoelt waarschijnlijk als opgave 2/(x-1) 5. De denkfout die je maakt is dat kruisvermenigvuldigen niet zomaar gedachteloos kan toegepast worden.
Je kan beide leden vermenigvuldigen met (x-1) MAAR wat er met het teken van de ongelijkheid gebeurt hangt af van wat het teken van (x-1) is: bij x1 blijft het teken van de ongelijkheid behouden, bij x1 keert het om.
Je moet dus 2 gevallen onderscheiden en apart oplossen. De oplossing zou dan het halfopen interval ]1,7/5] moeten zijn. Lukt het zo?
PS: Wat je ook kan doen is de 5 naar het andere lid brengen, alles op 1 noemer te schrijven en dan tekenonderzoek te doen van zowel teller als noemer, die eerstegraads veeltermen zijn en dus een verloop -----0+++++ of +++++0----- hebben...
|
Vragen naar aanleiding van dit antwoord? Klik rechts..!
donderdag 9 oktober 2003
|
|
home |
vandaag |
bijzonder |
gastenboek |
statistieken |
wie is wie? |
verhalen |
colofon
©2001-2024 WisFaq - versie 3
|