De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Raaklijnen aan een parabool vanuit een gegeven punt

Hoe bereken ik een vergelijking van de raaklijnen vanuit (1,-3) aan de parabool: x2=8y

Charlo
Student hbo - vrijdag 15 augustus 2003

Antwoord

Bij dit soort problemen moet je altijd eerst even kijken op het punt (1,-3) wel op de parabool ligt (het makkelijke geval) of niet op de parabool ligt (het moeilijke geval). Uiteraard hebben we hier te maken met het moeilijke geval.

q13467img1.gif

Dit moeilijke geval kan op verschillende manieren opgelost worden. Een uiterst fraaie oplossing is de volgende:
Schrijf eerst even de parabool als y=1/8x2 (niet echt noodzakelijk)
De afgeleide is dan y'=1/4x (dus alg. richtingsvector raaklijn: (1,1/4x) )
Neem even aan dat het raakpunt algemene gedaante (x,y) heeft, dus raakpunt is (x,1/8x2)
Uit de afgeleide volgt de normaalvector in het raakpunt: nv(1/4x,-1).
De richtingsvector van de lijn door het punt van de parabool en (1,-3)
is dan de richtingsvector door (x,1/8x2) en (1,-3) is rv(x-1,1/8x2+3)
De genoemde normaalvector en de richtingsvector moeten loodrecht op elkaar staan dus moet het inproduct van deze vectoren 0 zijn.
Dat levert op 1/4x·(x-1)+ -1·(1/8x2+3)=0
Û1/4x2-1/4x-1/8x2-3=0 Û x2-2x-24=0 Û x=-4 of x=6

Zoals je kunt zien klopt dit. De raakpunten kun je nu makkelijk uitrekenen en die raaklijnen ook, je hebt tenslotte de normaalvector !!

met vriendelijke groet

JaDeX

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
vrijdag 15 augustus 2003



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3