De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Re: Omwentelingsoppervlak

 Dit is een reactie op vraag 13374 
Sorry, ik bedoel dus M((-1/8)Ö6,(-1/8)Ö6,9/4) en v((-3/4)Ö6,(-3/4)Ö6,3/2)

De bedoeling was om eerst alles in standaardpositie te schrijven en dan te transformeren naar de oorspronkelijke plaats.

Ik heb nog eens zelf geprobeerd de oefening op te lossen en ik krijg dit:

Dus de ellips zou zijn (z2/a2) + (x2/b2) = 1 (als we s transformeren naar de Z-as en de ellips in het XZ-vlak beschouwen) of [b·sin(t),0,a·cos(t),1] in homogene coördinaten. De ellips wentelen om de Z-as geeft dan [b·sin(t)·cos(r),b·sin(t)·sin(r),a·cos(t),1].
Maar dan moet het omwentelingslichaam nog naar zijn oorspronkelijke plaats teruggebracht worden door de transformatiematrix en ik krijg dan de vergelijking "-36·y2+8·y·Ö(3)·z-60·y·Ö(3)-48·x2-44·z2-108·z-99".

Is dit de juiste oplossing?

Kelly
Student universiteit België - dinsdag 12 augustus 2003

Antwoord

Ik begrijp je methode niet helemaal, maar de oplossing is wel fout. De vector M + a.(v/||v||), die een van de snijpunten met de rotatieas voorstelt, voldoet bijvoorbeeld al niet aan je vergelijking.

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
dinsdag 19 augustus 2003



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3