De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Waarde van minima bepalen in een vergelijking met 2 variabelen

Hallo, Ik heb een vreemde vraag tussen mijn opgaven:

-----------------------------------------------------------
f:x - ln2x + 2p.lnx -3 voor xÎ en pÎ

Onderzoek voor welke waarden het minimum van f kan aannemen.
-----------------------------------------------------------

Volgens mij zijn als waarden voor dit minimum elke waarde voor y mogelijk.

Mijn methode was als volgt:

afgeleide berekenen en op nul herleiden:
  
2lnx + 2p
--------- = 0
x
Dit geeft p = -lnx

dus voor elke waarde van p is er een extreem te vinden.
Maar voor p kan je dus ook elke waarde vinden, aangezien het bereik van -lnx is.

Dan kan ik volgens mij alleen maar zeggen dat de waarden van de minima die ik moet opgeven, elke rationele waarde kan aannemen, dus Î.

Het lijkt me niet dat dit bedoelt wordt met de vraag, of ik zie iets over het hoofd.

Jurgen

Jurgen
Student universiteit - zaterdag 12 juli 2003

Antwoord

Je berekent nu p=... zodat f'(x)=0, maar je moet natuurlijk de x-waarde uitrekenen (f is immers een functie van x)! Je krijgt dan x=e-p. Als je deze waarde invult in f en je berekent f(e-p) dan krijg je f(x)=-p2-3. Dit laatste is een minimum (dat moet je nog wel even laten zien!) en hangt dus van p af. Zoiets?

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zaterdag 12 juli 2003



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3