De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Inhoud

op een cilinder met gekende diameter wordt een indrukking gemaakt met een piramide (met vierhoekig grondvlak) waarvan de 2 diagonalen (niet gelijk aan elkaar)en de tophoek (over de ribben gemeten,niet van de zijden)gekend is.Een van de diagonalen van de piramide ligt evenwijdig met de aslijn van cilinder en de indrukking gebeurd met de punt van de piramide altijd naar het center van de cilinder.Daarna krijg je de meetwaarden via een meettoestel. Dit meet de diagonalen van de indrukking en via de tophoek kan je de diepte bepalen.
Hoe bereken ik de inhoud van de ingedrukte vorm.
DE variabelen zijn, de diameter van de cilinder, de tophoek van 1 van de diagonalen en de lengten van de diagonalen

Hans G
Iets anders - dinsdag 8 juli 2003

Antwoord

De ingedrukte vorm heeft ook de vorm van een piramide. De diagonalen van de indrukking noem ik A en B. De inhoud van de indrukking (de inhoud van een piramide) is 1/3·G·h. Hierin is G de oppervlakte van het grondvlak en h de hoogte, de loodrechte afstand van de tophoek tot het grondvlak, van de piramide.
G=1/2·A·B en h=(1/2·A)/tan(a)
waarin a=halve tophoek m.b.t. diagonaal A.
De inhoud van indrukking is dan
(1/3)·(1/2·A·B)·(1/2·A)/tan(a)=(A2·B)/(12·tan(a))

Sander
Vragen naar aanleiding van dit antwoord? Klik rechts..!
woensdag 9 juli 2003



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3