|
|
\require{AMSmath}
Combinatie probleem
Uit 15 leerlingen moeten er 4 gekozen worden voor de leerlingenraad. Op hoeveel manieren kan dit gebeuren als er twee zijn die niet beiden bij de afvaardiging willen zijn. Onze leerkracht zegt C3-14 + C3-14 + C4-13 Ik begrijp niet waarom het C3-14 is... kan dan de persoon die wel meedoet niet tweemaal gekozen worden? wat is dan wel het juiste antwoord? bedankt
Charlo
3de graad ASO - maandag 9 juni 2003
Antwoord
Hallo Charlotte, Als je die twee die niet samen willen, A en B noemt, zijn er drie mogelijkheden: A is bij de vier, B is bij de vier, A en B zijn allebei niet bij de vier. Dit zijn alle mogelijkheden, en ze overlappen zeker niet. En goed gezien: dit geeft niet de oplossing van je leerkracht: als A er zeker bij is moet je er nog drie kiezen uit dertien (vijftien min A min B). Ook als B er bij is moet je er nog drie kiezen uit dertien. Als A noch B er bij zijn moet je er vier kiezen uit dertien. Dus van die 14 moet je twee keer een 13 maken. Je kan het ook anders bekijken: er zijn C4-15 mogelijkheden, waarvan C2-13 verkeerde, namelijk die waarvoor A en B tegelijk gekozen werden. Die twee redeneringen geven hetzelfde resultaat, namelijk 1287. Groeten, Christophe.
Christophe
|
Vragen naar aanleiding van dit antwoord? Klik rechts..!
maandag 9 juni 2003
|
|
home |
vandaag |
bijzonder |
gastenboek |
statistieken |
wie is wie? |
verhalen |
colofon
©2001-2024 WisFaq - versie 3
|