De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Vierdegraadsfunctie

Wanneer heeft een vierdegraadsfunctie één, twee of drie topppen? Waar is dit van afhankelijk?

Margot
Leerling bovenbouw havo-vwo - zondag 11 mei 2003

Antwoord

Hoi Margot,

Een vierdegraadsfunctie heeft toppen op de plaatsen waar de afgeleide van die functie (een derdegraadsfunctie) 0 is. Om de toppen van een vierdegraadsfunctie f(x) te bepalen reken je dus uit:

f'(x)=0

Je vraag is dus eigenlijk: wanneer heeft een derdegraadsfunctie 1,2 of 3 nulpunten? Je kan de nulpunten van een derdegraadsfunctie uitrekenen met de formule van Cardano (daar is genoeg over te vinden op internet, kijk ook eens in de wisfaq-database). Ik zal je ook een (Engelse) link geven die de derdegraadsfunctie oplost aan de hand van de vorm van de grafiek:
Let er trouwens wel op dat een nulpunt in de afgeleide niet altijd een top aangeeft, maar ook een buigpunt kan zijn. Voorbeeld met een derdegraadsfunctie met een tweedegraads afgeleide:
f(x)=x3
f'(x)=3x2 heeft nulpunt in x=0, maar f(x) heeft geen top in x=0, maar een buigpunt.
Dit komt omdat f''(x)=6x óók een nulpunt in x=0 heeft.

Met de vierdegraadsfuncties gaat t hetzelfde.

groet,

Casper

cz
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zondag 11 mei 2003



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3