Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


Logaritmische schalen en rechte lijnen

Waarom geeft de formule y=2x een rechte lijn op enkellogaritmisch papier en waarom geven de formules y=2x en y=x2 rechte lijnen op dubbellogaritmisch papier?

lenner
Leerling bovenbouw havo-vwo - zaterdag 19 oktober 2002

Antwoord

Op enkel-logaritmisch papier wordt de y-waarde weergegeven op een logaritmische schaal. Dus voor y=2x is de 'fysieke' plaats/hoogte in de grafiek log(2x) en dat is gelijk aan x·log(2) zodat op papier het verband 'er uit ziet' als y=x·log(2) en dat is een rechte lijn....

Op dubbellogaritmisch papier worden zowel de x-waarde als de y-waarde op een logaritmische schaal weergegeven. De y-waarde gaat net als boven... maar wat gebeurt er met de x?

De 'fysieke' plaats van x-waarde wordt weergegeven als 10x (denk daar maar eens over na!). In combinatie met het bovenstaande kun je zeggen dat de grafiek van y=2x op papier wordt weergegeven als y=log(2·10x) en dat is hetzelfde als y=log(2)+x, dus een rechte lijn!

De grafiek van y=x2 wordt weergegeven als y=log((10x)2) en dat is y=log(102x)=2x en dat is ook een rechte lijn...

Waarom wordt een exponentiëel verband dan niet weergegeven als rechte lijn op dubbellogaritmisch papier? In het geval van y=2x zou je dus op papier iets krijgen als y=log(210x) en dat is hetzelfde als 10x·log(2) en dat is geen rechte lijn...

Hopelijk kan je hier iets mee...

Zie Logaritmische schaal

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zaterdag 19 oktober 2002



©2004-2024 WisFaq