\require{AMSmath}
WisFaq - de digitale vraagbaak voor wiskunde en wiskunde onderwijs


Printen

Re: Re: Re: Reeksen van getallen

 Dit is een reactie op vraag 93539 
ik snap wat je bedoelt maar stel dat je het met asymptotische equivalentie doet.

dan krijg je nn/nn en als je dat vereenvoudigd is het toch gewoon 1

stel je neemt nn+1/nn dan zou je toch ook kunnen zeggen dat is $\infty $ / $\infty $ maar als je het vereenvoudigt krijg je n.

bv lim n $\to $ 0 sin(n)/sin(n) kan je ook zien als een onbepaaldheid 0/0 maar dan je toch ook niet opeens regel van l'hospital toepassen maar zeg je gewoon 1
of lim n $\to $ $\infty $ ln(x)/ln(x) zou je ook kunnen zien als $\infty $ / $\infty $ maar je zegt gewoon 1.

Mike
Student universiteit België - woensdag 13 april 2022

Antwoord

Als je asymptotische equivalentie wilt gebruiken dan zul je moeten bewijzen dat het altijd goed afloopt. Je wilt kennelijk deze stelling toepassen:

als $\eqalign{\lim_n\frac{a_n}{b_n}=1}$ en ${\eqalign{\lim_n\frac{c_n}{d_n}=1}}$ dan geldt
$$\lim_{n\to\infty}\frac{a_n^{c_n}}{b_n^{d_n}}=1
$$Bewijs hem maar.

kphart
woensdag 13 april 2022

 Re: Re: Re: Re: Reeksen van getallen 

©2001-2024 WisFaq