\require{AMSmath}
WisFaq - de digitale vraagbaak voor wiskunde en wiskunde onderwijs


Printen

Differentiaalvergelijking

Geachte heer/ mevrouw,

Ik loop enorm vast bij de volgende opdracht en heb daarbij uw hulp heel erg hard nodig. Het gaat om de volgende opdracht:

Laat zien door middel van invullen dat de functie y= −1 + √(C + 2 ln |x|) een oplossing van de differentiaalvergelijking dy/dx= 1/x+xy is voor elke waarde van de parameter C.

Ik weet niet waar de beginnen en zou het op prijs stellen als u mij een eind op weg zou willen helpen.

Alvast hartelijk dank voor de hulp.

Groet,

Mario

Mario
Student hbo - vrijdag 7 januari 2022

Antwoord

1) Differentieer y(x)= −1 + √(C + 2 ln |x|)
2) Vul het resultaat in de d.v. in voor dy/dx
3) Vul y(x)= −1 + √(C + 2 ln |x|) in de d.v. in voor y
4) Laat zien dat je dan een waarheid als een koe krijgt.

P.S.
Kun je bij eventuele vervolgvragen duidelijk maken wat je bedoelt met
dy/dx=1/x+xy:
dy/dx=1/(x+xy) of dy/dx=(1/x)+xy


vrijdag 7 januari 2022

 Re: Differentiaalvergelijking 

©2001-2024 WisFaq