\require{AMSmath}
WisFaq - de digitale vraagbaak voor wiskunde en wiskunde onderwijs


Printen

Volledige inductie

Beste allen,
Ik ben een opgave m.b.v. volledige inductie aan het oplossen, maar loop halverwege vast. Het gaat om de volgende opdracht:

1+2+3+.......n= 1/2n(n +1)
1+2+3+.......n+1= 1/2(n+1)(n+2
1/2n(n+1)+(n+1)= 1/2(n+1)(n+2)

Tot en met hier gaat het prima. Vanaf onderstaande uitwerking gaat het fout. Namelijk:

(n+1)(1/2n+1)= 1/2(n+1)(n+2).

Hoe is men aan(n+1)(1/2n+1)gekomen:

1/2(n+1)(n+2)= 1/2(n+1)(n+2).

Zou u mij kunnen uitleggen hoe men aan die laatste twee stappen zijn gekomen?

Alvast bedankt

Mario
Student hbo - zaterdag 21 augustus 2021

Antwoord

Bij de eerste stap kun je $n+1$ buiten haakjes halen:

$
\eqalign{
& \frac{1}
{2}n(n + 1) + (n + 1) = \cr
& (n + 1)\left( {\frac{1}
{2}n + 1} \right) \cr}
$

Bij de tweede stap kun je $\frac{1}{2}$ buiten haakjes halen bij $\frac{1}{2}n+1$:

$
\eqalign{
& (n + 1)\left( {\frac{1}
{2}n + 1} \right) = \cr
& (n + 1) \cdot \frac{1}
{2}(n + 2) = \cr
& \frac{1}
{2}(n + 1)(n + 2) \cr}
$

Helpt dat?




zaterdag 21 augustus 2021

©2001-2024 WisFaq