Re: Limiet irrationale vorm en schuine raaklijn
Hallo Jan,
De opgave luidt limiet voor=/- x naar oneindig : √(x2+4x-2) + x-2. dat heb ik.
Hier in grote karakters geschreven door (DUS die student. (√(x2+4x-2)) +(x-2) met: {(x-2 niet onder wortel} Zit er dus in mijn rekening iets dat foutief is ...? Ik geloof het niet. Goede nacht Rik
Rik Le
Iets anders - donderdag 25 maart 2021
Antwoord
Hey Rik
We zijn het eens over de opgave en we hebben het nu dus even alleen over de scheve asymptoot rechts.
Ik kom er met jouw berekening niet helemaal uit. Je werkt je een beetje in de problemen. En die scheve asymptoot is er wel degelijk voor x$\to$+$\infty$.
Je eerste stap (delen door x) lijkt me een goede keuze om die m vast te stellen.
Lim x$\to\infty$ (√(x2+4x-2) + (x-2))/x = m. Dat is een goede gedachte. Nu ga je het moeilijk maken door te vermenigvuldigen met √... - (...) Waarom niet gewoon alle termen direct delen door x? Dat is toch veel simpeler? In de noemer blijft dan 1 staan. De teller door x delen levert op: √(1+4/x-2/x2) + 1-2/x en als x$\to\infty$ komt daar dus gewoon 2 uit. Klaar.
Nu die b nog. Bepaal daarvoor lim x$\to\infty$ √(x2+4x-2) + (x-2) - 2x = lim x$\to\infty$ √(x2+4x-2) - (x+2). Nu wel boven en onder de streep vermenigvuldigen met √(x2+4x-2) + (x+2) en je ziet dat daar dan voor die b de uitkomst 0 is.
En dit is nu wel het bewijs. ps die horizontale asymptoot is er links dus ook.
Met vriendelijke groet JaDeX
vrijdag 26 maart 2021
©2001-2024 WisFaq
|