\require{AMSmath}
WisFaq - de digitale vraagbaak voor wiskunde en wiskunde onderwijs


Printen

Re: Re: Bepaal een vectorvoorstelling

 Dit is een reactie op vraag 89391 
Bedankt, bij deze vraag was nog toegevoegd:

Gegeven de lijn n:x-7y+22=0, de punten Q(2,2) en R(4,3).
Toon aan dat de lijn QR gelijke hoeken maakt met de lijnen k en n.

Ik probeer de lijn n om te vormen tot een vectorvoorstelling maar krijg breuken: stel x=l dan y=(0,22/7)+1/7l is dan de vectorvoorstelling van n(7,22)+l(7,1)?

Hier moet ik dan het de deellijn op toepassen tussen k en n?

cos$\Phi$1=cos$\Phi$2.

mboudd
Leerling mbo - zondag 22 maart 2020

Antwoord

Zou dit niet handig zijn?

$
\begin{array}{l}
k:x - y - 2 = 0 \Rightarrow r_k = \left( {\begin{array}{*{20}c}
1 \\
1 \\
\end{array}} \right) \\
n:x - 7y + 22 = 0 \Rightarrow r_n = \left( {\begin{array}{*{20}c}
7 \\
1 \\
\end{array}} \right) \\
\end{array}
$

$m$ door Q(2,2) en R(4,3)

$
m:\left( {\begin{array}{*{20}c}
x \\
y \\
\end{array}} \right) = \left( {\begin{array}{*{20}c}
2 \\
2 \\
\end{array}} \right) + \rho \left( {\begin{array}{*{20}c}
2 \\
1 \\
\end{array}} \right)
$

Bereken $
\cos \phi _1
$ en $
\cos \phi _2
$ en je bent er...

P.S.
Ik weet niet waar die (7,22) bij jouw vectorvoorstelling van $n$ vandaan komt want daar gaat iets niet goed. De richtingsvector is wel goed.

Tip
Als je een leuk punt van $n$ zoekt kan je 's proberen om voor $x$ iets te kiezen zodat het 'getal' deelbaar is door 7. Neem bijvoorbeeld 6. Dan is $6-7y+22=0$ gelijk aan $-7y+28=0$. Het punt (6,4) ligt op $n$.

Vraag
Weet je hoe je die $
r_k = \left( {\begin{array}{*{20}c}
1 \\
1 \\
\end{array}} \right)
$ en $
r_n = \left( {\begin{array}{*{20}c}
7 \\
1 \\
\end{array}} \right)
$ handig kan vinden?


zondag 22 maart 2020

©2001-2024 WisFaq