\require{AMSmath}
WisFaq - de digitale vraagbaak voor wiskunde en wiskunde onderwijs


Printen

In drie gelijke stukken

Ik kom er niet uit om het vraagstuk op te lossen bij d.

Gegeven is kubus CEFG·OABD met a, b en c als plaatsvectoren van A, B en C.

a.
Bepaal een vectorvoorstelling van de vlakken OEG en ABF.
Vlak OEG: l(a + c) + m(b + c)
Vlak ABF: a + l(b - a) + m(b + c)

b.
Bepaal een vectorvoorstelling van de drager van CD.
Drager CD: c + l(a + b -c)

c.
Bepaal plaatsvectoren van de twee snijpunten van CD met de vlakken uit a.
S = 2a/3 + 2b/3 + c/3

d.
Toon aan dat CD door de vlakken uit a. in drie gelijke stukken wordt verdeeld.
?

mboudd
Leerling mbo - dinsdag 4 februari 2020

Antwoord

Hallo mboudd,

We hebben $CD = \vec{c}+ \lambda(\vec{a}+\vec{b}-\vec{c})$. Merk op dat $C$ hoort bij $\lambda=0$ en $D$ bij $\lambda=1$.

Je zou nu moeten laten zien dat de punten die horen bij $\lambda=\frac 13$ en $\lambda=\frac 23$ op de vlakken van vraag a. liggen. Als dat zo is, dan heb je d. beantwoord!

Met vriendelijke groet,


dinsdag 4 februari 2020

©2001-2024 WisFaq