Hoe ziet de grafiek van cos|x| eruit?
hi in de opgave staat
Teken de grafiek van f(x)=|sinx| en g(x)=cos|x|
het word bij dit soort opgaves al gauw een geklieder als je vanuit de standaardfuncties sinx en cosx de andere grafieken probeert te tekenen en omdat ik niet weet waar sinx en cos x de de xas snijden zou ik al gauw functieonderzoek moeten doen bij dit soort opgaves is er een makkelijkere manier of moet ik echt de eenheidcirkel elke keer erbij halen waar sinx of cosx een bepaalde waarde heeft bekijken met de tabel
mboudd
Leerling mbo - vrijdag 14 december 2018
Antwoord
Het is wel handig wanneer je snel de standaardgrafiek van sin(x) en cos(x) kunt schetsen, en dat je weet dat één volledige periode 2$\pi$ is. Je ziet dan gelijk dat de grafiek van sin(x) de x-as snijdt bij x=0, x=$\pi$ en x=2$\pi$ (in volgende periodes natuurlijk hetzelfde). De grafiek van cos(x) heeft nulpunten bij x=1/2$\pi$ en x=3/2$\pi$. Voor de grafiek van f(x)=|sin(x)| klap je alle delen van de standaard grafiek die onder de x-as liggen omhoog, ofwel: spiegelen t.o.v. de x-as. Voor de grafiek van g(x): bedenk dat het voor |x| niet uitmaakt of je een positieve waarde of een negatieve voor x invult, je krijgt altijd de positieve waarde als resultaat. De grafiek vanaf x=0 naar links verloopt hetzelfde als de grafiek vanaf x=0 naar rechts, ofwel: het rechter deel van de grafiek spiegel je t.o.v. de y-as om het linker deel te krijgen. Voor positieve waarden van x is de grafiek de standaard grafiek. Spiegelen t.o.v. de t-as levert het linker deel. Omdat de grafiek van de cosinusfunctie symmetrisch is t.o.v. de y-as, krijg je bij dit spiegelen 'toevallig' dezelfde grafiek als bij cos(x) zonder absoluut-strepen.
vrijdag 14 december 2018
©2001-2024 WisFaq
|