\require{AMSmath}
WisFaq - de digitale vraagbaak voor wiskunde en wiskunde onderwijs


Printen

Wortelfuncties

Gegeven:

f(x)=√(3x+2)
g(x)=√(9-x)

a) de verticale rechte x=p snijdt de grafiek f in het punt F en de grafiek g in het punt G. Bepaal p zodat de afstand van F tot G gelijk aan 1 is.

b) De horizontale rechte y=q snijdt de grafiek f in het punt M en de grafiek g in het punt N. Bepaal q zodat de afstand van M tot N gelijk aan 1 is.

anja
3de graad ASO - dinsdag 4 december 2018

Antwoord

Hallo Anja,

a) Maak een schets, kies een punt x=p op de x-as en geef de punten F en G aan op de krommen. Dan is:

f(p)=√(3p+2)
g(p)=√(9-p)

De afstand tussen F en G moet 1 zijn. Dus:

f(p)-g(p)=1 of g(p)-f(p)=1.

Los deze vergelijkingen op om p te vinden.

b) In dezelfde schets (of een nieuwe): kies een punt x=p en een punt x=p+1 op de x-as. Doe dit zodanig dat f(p) en g(p+1) op dezelfde hoogte liggen. Geef de punten f(p) en g(p+1) op de kormmen duidelijk aan, dit zijn de punten M en N. De afstand tussen deze punten is 1 (begrijp je waarom?).

M en N liggen op dezelfde hoogte, dus moet gelden:

f(p)=g(p+1)

Los deze vergelijking op om p te vinden, je vindt daarmee ook de bijbehorende y-waarde van de punten M en N.

f(p+1)=g(p) levert ook een oplossing (begrijp je waarom?).

Geef volgende keer ook aan wat je zelf al hebt geprobeerd of waar het probleem ligt, zie de spelregels.


dinsdag 4 december 2018

©2001-2024 WisFaq