\require{AMSmath}
WisFaq - de digitale vraagbaak voor wiskunde en wiskunde onderwijs


Printen

Schuine asymptoten

Beste
Hoe bereken je de schuine asymptoten van de volgende functie?
y=sqrt(x2-3x+2)
Voor a te bekomen limx$\to$ +-infty sqrt(x2-3x+2)/x a=1 en -1
Voor b te bekomen limx$\to$ +-infty sqrt(x2-3x+2)-x
Hoe kom ik voor b= 1.5 en -1.5?

David
Student Hoger Onderwijs België - woensdag 10 augustus 2016

Antwoord

Voor $x\to\infty$: vermenigvuldig met $\sqrt{x^2-3x+2}+x$ gedeeld door zichzelf:

$
\eqalign{\frac{(\sqrt{x^2-3x+2}-x)(\sqrt{x^2-3x+2}+x)}{\sqrt{x^2-3x+2}+x}}$=$\eqalign{
\frac{x^2-3x+2-x^2}{\sqrt{x^2-3x+2}+x}}$=$\eqalign{\frac{-3x+2}{\sqrt{x^2-3x+2}+x}}
$

Nu kun je uit teller en noemer een factor $x$ wegdelen; van wat overblijft is dan duidelijk te zien dat de liniet gelijk is aan $-\frac32$.
Voor $x\to-\infty$ moet je de limiet van $\sqrt{x^2-3x+2}+x$ hebben en dan vermenigvuldig je met $\sqrt{x^2-3x+2}-x$ gedeeld door zichzelf.

kphart
woensdag 10 augustus 2016

©2001-2024 WisFaq