\require{AMSmath}
WisFaq - de digitale vraagbaak voor wiskunde en wiskunde onderwijs


Printen

Lokaal stijgend globaal stijgend

Ik moet bewijzen dat wanneer een functie (lokaal) strikt stijgend (resp dalend) is in elk punt van een interval, ook globaal stijgend (resp dalend) is over het gehele interval. Het moet op een of andere manier te maken hebben met een eigenschap die R heeft maar Q niet.
Ik zou niet weten hoe ik hieraan moet beginnen...
Bedankt!

Julie
Student universiteit - dinsdag 29 december 2015

Antwoord

Voor het gemak nemen we aan dat we op heel $\mathbb{R}$ werken.
Neem voor elk punt $x$ een intervalletje $I_x$ om $x$ waarop je functie stijgend is.
Bekijk $S=\{x:f$ is stijgend op $[0,x]\}$.
Bewijs nu zelf: als $x\in S$ dan $I_x\subseteq S$.
Bewijs ook: als $I_x\cap S\neq\emptyset$ dan $I_x\subseteq S$.
Bewijs ten slotte: $S=[0,\infty)$.
Doe iets dergelijks voor $T=\{x:f$ is stijgend op $[x,0]\}$.

kphart
dinsdag 29 december 2015

Re: Lokaal stijgend globaal stijgend

©2001-2024 WisFaq