\require{AMSmath}
WisFaq - de digitale vraagbaak voor wiskunde en wiskunde onderwijs


Printen

Convergentie in kans

Hallo wisfaq,

Zij Z1,Z2,... een rij van N(0,1) stochastische variabelen (onafhankelijk en identiek verdeeld).

Definieer Xn=e^(a*Sn-b*n), a en b zijn reële getallen.

met Sn=som[Zi], i=1 t/m n.

Ik wil het volgende aantonen:

1. Xn convergeert in kans naar 0 d.e.s.d.a. b$>$0.
2. Xn convergeert bijna zeker naar 0 d.e.s.d.a. b$>$0.

Om 1. te bewijzen is het niet toegestaan eerst 2. bewijzen en dan concluderen dat bijna zeker convergentie impliceert convergentie in kans.

Ik begrijp helemaal niet hoe ik hier te werk moet gaan.

Ik moet bewijzen dat

voor iedere epsilon$>$0, convergeert P(|Xn-X|$\ge$0) naar 0 voor n-$>$oneindig.

Dus ik moet bewijzen dat

P( |e^(a*Sn-b*n)| $\ge$ eps)-$>$ 0

Ik denk dat P( |e^(a*Sn-b*n)| $\ge$ eps) moet herschrijven en afschatten.

Groeten,

Viky

viky
Iets anders - woensdag 25 februari 2015

Antwoord

Ombouwen en afschatten, inderdaad: als $a$>$0$ dan kun je $e^{aS_n-bn}\ge\epsilon$ omwerken tot
$$
\frac1{\sqrt n}S_n\ge \frac ba\sqrt n-\frac{\ln\epsilon}{a\sqrt n}
$$
Nu is $\frac1{\sqrt n}S_n$ weer $N(0,1)$ verdeeld en $\lim \frac ba\sqrt n-\frac{\ln\epsilon}{a\sqrt n}=\infty$ als $b$>$0$, dus de limiet van de kans is inderdaad $0$.

kphart
woensdag 25 februari 2015

©2001-2024 WisFaq