Vergelijkingen
Hallo meneer, Ik ben begonnen met wiskunde doornemen voor toetsweek. Dit zijn mijn vragen van eerste hoofdstuk. Ik snap paar vergelijkingen niet. Ik heb wel geprobeerd maar lukt mij niet ze op te lossen. Ik stuur de de foto van de sommen via email. En u kunt ook gelijk zien wat ik zelf heb geprobeerd.- x4-10x2=11
- (x2-8)2=x2-82
- -2x(x-8)=y en 4x+2y=43 Bij welke waarden van x de snijden de grafieken elkaar? Antwoord op 2 decimalen.
- Laatste heb ik een gedeelte gemaakt maar laatste opgave snap ik het niet. Ik stuur foto van.
Ik hoop snel een reactie van u te ontvangen. Met vriendelijke groet,
saideh
Leerling bovenbouw havo-vwo - zaterdag 14 juni 2014
Antwoord
Kijk dat doe je zo!
1. $ \begin{array}{l} x^4 - 10x^2 = 11 \\ x^4 - 10x^2 - 11 = 0 \\ Neem\,\,y = x^2 \\ y^2 - 10y - 11 = 0 \\ (y - 11)(y + 1) = 0 \\ y = 11\,\,of\,\,y = - 1 \\ x^2 = 11\,\,of\,\,x^2 = - 1\,\,(v.n.) \\ x = - \sqrt {11} \,\,of\,\,x = \sqrt {11} \\ \end{array} $
Zie ook Oplossen van een bikwadratische vergelijking
2. $ \begin{array}{l} (x^2 - 8)^2 = x^2 - 8^2 \\ x^4 - 16x^2 + 64 = x^2 - 64 \\ x^4 - 17x^2 + 128 = 0 \\ Neem\,\,y = x^2 \\ y^2 - 17y + 128 = 0 \\ D = \left( { - 17} \right)^2 - 4 \cdot 1 \cdot 128 = - 223 \\ \end{array} $ Geen oplossing!
3. $ \begin{array}{l} \left\{ \begin{array}{l} 2x(x - 8) = y \\ 4x + 2y = 43{\rm{ }} \\ \end{array} \right. \\ 4x + 2\left( {2x(x - 8)} \right) = 43 \\ 4x + 2(2x^2 - 16x) = 43 \\ 4x + 4x^2 - 32x = 43 \\ 4x^2 - 28x - 43 = 0 \\ \end{array} $ ..en dan verder oplossen met de ABC-formule.
4. $ \begin{array}{l} x - 2y = 1 \\ - 2y = - x + 1 \\ y = \frac{1}{2}x - \frac{1}{2} \\ Dus: \\ \frac{3}{{x - 2}} = \frac{1}{2}x - \frac{1}{2} \\ \left( {x - 2} \right)\left( {\frac{1}{2}x - \frac{1}{2}} \right) = 3 \\ \frac{1}{2}x^2 - \frac{1}{2}x - x + 1 = 3 \\ \frac{1}{2}x^2 - 1\frac{1}{2}x - 2 = 0 \\ x^2 - 3x - 4 = 0 \\ (x - 4)(x + 1) = 0 \\ x = 4 \vee x = - 1 \\ Snijpunten: \\ \left( { - 1, - 1} \right)\,\,en\,\,\left( {4,1\frac{1}{2}} \right) \\ \end{array} $
...en als je daar vragen over hebt dan hoor ik dat natuurlijk graag...
zaterdag 14 juni 2014
©2001-2024 WisFaq
|