Limieten bewijzen
Je moet bewijzen dat 3 de limiet is van de functie: f(x)=x2-1
lim (x2-1) = 3 x$\to$-2
|(x2-1)-3| $<$ $\epsilon$ |x-(-2)| $<$ $\delta$
Ik kom tot deze stap, maar hoe moet ik nu verder?
Sara
Student universiteit - zaterdag 8 september 2012
Antwoord
Ik zal je een voorbeeld geven. Als je dat 's ernstig bestudeert dan kan je 't zelf ook wel, denk ik.
$ \begin{array}{l} \mathop {\lim }\limits_{x \to 3} x^3 - 2x^2 + 3x - 4 = 14 \\ \left| {f(x) - 14} \right| = \left| {x^3 - 2x^2 + 3x - 4 - 14} \right| = \left| {x^3 - 2x^2 + 3x - 18} \right| = \left| {x - 3} \right| \cdot \left| {...} \right| \\ x - 3/x^3 - 2x^2 + 3x - 18\backslash x^2 + x + 6 \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,x^3 - 3x^2 \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x^2 + 3x - 18 \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x^2 - 3x \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,6x - 18 \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,6x - 18 \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,0 \\ \left| {f(x) - 14} \right| = \left| {x^3 - 2x^2 + 3x - 18} \right| = \left| {x - 3} \right| \cdot \left| {x^2 + x + 6} \right| \\ Kies\,\,\delta _1 = 1\,\,dan\,\,\left| {x - 3} \right| < 1 \\ - 1 < x - 3 < 1,\,\,dus\,\,2 < x < 4,\,\,zodat\,\,\left| x \right| < 4 \\ Met\,\,\left| x \right| < 4\,\,geldt\,\,\left| {x^2 + x + 6} \right| \le 4^2 + 4 + 6 < 26 \\ Kies\,\,\delta _2 = \frac{1}{{26}}\varepsilon \,\,en\,\,neem\,\,\delta = \min (\delta _1 ,\delta _2 ),\,\,dan\,\,geldt: \\ \left| {f(x) - 14} \right| = \left| {x - 3} \right| \cdot \left| {x^2 + x + 6} \right| \le \frac{1}{{26}}\varepsilon \, \cdot 26 = \varepsilon \\ \end{array} $
Lukt dat zo?
zaterdag 8 september 2012
©2001-2024 WisFaq
|