Re: Probleem met de regel van de L`Hospital
Het lukt mij niet om als uitkomst 2/pi te krijgen lim x$\to$1 {(x-1)sin(pi.x/2)}/cos(pi.x/2)= lim x$\to$1 (x-1){($\frac{\pi}{2}$)cos(pi.x/2)}/-($\frac{\pi}{2}$)sin(pi.x/2)= lim x$\to$1 (x-1){cos(pi.x/2)}/-sin(pi.x/2) Als ik nog een keer l'Hopital toepas krijg ik het gegeven terug! Wie kan mij weer op het goede pad zetten? Bij voorbaat hartelijk dank
Johan
Student hbo - vrijdag 5 november 2010
Antwoord
Johan, de lim sin(1/2px)=sin(1/2p)=1, terwijl lim(x-1)/(cos(1/2px)= =lim 1/(-1/2psin(1/2px))=-2/p,en de gevraagde limiet is het product van beide.
kn
zaterdag 6 november 2010
©2001-2024 WisFaq
|