\require{AMSmath}
WisFaq - de digitale vraagbaak voor wiskunde en wiskunde onderwijs


Printen

Vergelijking van een vlak bepalen

Ik wou eens een oefening oplossen die we niet in de les gemaakt hebben, voor mijn toets. Maar ik zit vast.

Gegeven
e: 2x-3y-1=0 y-2z-3=0
f: x/2=y+1/4=2z-1/6

bepaal een vergelijking van het vlak 'gamma' dat door e gaat en evenwijdig is met f. (In voorgaande oefeningen heb ik al bewezen dat e en f kruisende rechten zijn)

tim
3de graad ASO - dinsdag 28 september 2010

Antwoord

Hallo

Bepaal de richtvector van de rechte e en van de rechte f.
Vermits het gevraagde vlak de rechte e bevat en evenwijdig is met de rechte f zijn deze richtvectoren van de rechte e en f ook richtvectoren van het gevraagde vlak.
Bepaal ook een punt dat tot de rechte e behoort. Vermits de rechte e in het vlak ligt, is dit punt ook een punt (vertegenwoordiger) van het vlak.
Je kent dus twee richtvectoren en een punt (vertegenwoordiger) van het gevraagde vlak.
(Oplossing: 2x-7y+8z=-11)
Ok?


dinsdag 28 september 2010

©2001-2024 WisFaq