Combinatoriek keuzes met herhaling
Beste,
In onze lessen hebben we reeds kennis gemaakt met variaties, permutaties en combinaties. Nu hebben we de opdracht gekregen om zelf vooraan in de klas les te geven over een uitbereiding hiervan: herhalingsvariaties, herhalingspermutaties en herhalingspermutaties. De formule van herhalingsvariaties kunnen we makkelijk verklaren adhv een voorbeeldje. De formule van herhalingspermutatie n!/a!b!c! begrijpen we echter niet zo goed. We weten niet waarom we gedeeld door moeten doen we kunnen dus niet verklaren vanwaar deze komt. We denken dat we dit best zouden uitleggen adhv een vbje maar daar slagen we niet zo goed in? Ook de formule van herhalingscombinatie C vanboven(p)en vanonder n+p-1 kunnen we niet goed uitleggen adhv een vb? Kunnen jullie ons op weg zetten om deze formules op een duidelijke manier uit te leggen?
Alvast bedankt!
mvg,
Valentine
Valent
3de graad ASO - vrijdag 20 november 2009
Antwoord
Dag Valentine, Herhalingspermutatie: Het gaat om het aantal manieren waarop je bijvoorbeeld 3 rode, 4 witte en 5 blauwe knikkers in een rijtje kan leggen. Als alle knikkers verschillend zouden zijn, dan zijn er 12! rijtjes mogelijk. Maar die rode kan je onderling verwisselen, dus moet je 12! delen door 3! Net zo goed moet je delen door 4! en 5! Een eenvoudiger voorbeeld ken je al: Als je k rode knikkers en n-k witte knikkers hebt, dan zijn er n!/(k!*(n-k)!) verschillende rijtjes mogelijk. (n boven k)
Kijk ook eens naar http://nl.wikipedia.org/wiki/Combinatoriek en 3. Tellen.
Een goede uitleg over herhalingscombinaties vind je op Formule voor herhalingscombinaties. Als er iets nog niet duidelijk is hoor ik het wel. Succes, Lieke.
ldr
zaterdag 21 november 2009
©2001-2024 WisFaq
|