Minima en maxima
Bepaal alle extrema van de functie y(x)=ln(1/x)+(1/8)x2 waarbij x0.
Mijn berekening gaat als volgt: y'(x)=1/(1/x)+(2/8)x =x-1+(2/8)x Dus, x-1+(2/8)x=0 x(x-1+2/8)=0 x=0 of x-1=-2/8, dus x=(-1)Ö(-2/8)=-4.
Het antwoord moet echter x=2 zijn. Kunt u mij uitleggen wat ik verkeerd doe? Ik heb al een vermoeden dat ik iets verkeerd doe bij de afgeleide van ln(1/x).
Lisa
Student hbo - donderdag 5 november 2009
Antwoord
Het gaat aardig, maar er zitten toch wel een paar foutjes in je berekening. Je vergeet bijvoorbeeld de kettingregel! Als je 't goed doet komt je uit op:
$ \eqalign{ & f'(x) = - {1 \over x} + {1 \over 4}x \cr & - {1 \over x} + {1 \over 4}x = 0 \cr & - 1 + {1 \over 4}x^2 = 0 \cr & {1 \over 4}x^2 = 1 \cr & x^2 = 4 \cr & x = - 2\,\,(v.n.) \vee x = 2 \cr & x = 2 \cr} $
Hopelijk helpt dat.
donderdag 5 november 2009
©2001-2024 WisFaq
|