\require{AMSmath}
WisFaq - de digitale vraagbaak voor wiskunde en wiskunde onderwijs


Printen

Ellips: bewijs

Gegeven:

E: 16x2 + 25y2 = 400
d: 3x - 25 = 0

We noemen F het brandpunt van E gelegen op de positieve x-as. Bewijs voor een veranderlijk punt D element van E dat de verhouding van de afstanden van D tot F en tot d constant is.

The Lo
3de graad ASO - woensdag 15 april 2009

Antwoord

Beste Londonist,

E wordt ook gegeven door de alternatieve vergelijking (x/5)2+(y/4))2=1, dus de punten U(5,0) en Ö(0,4) liggen op E.
Stel dat de brandpunten F'(-a,0) en F(a,0) zijn, voor positieve a. Daar de som van de afstanden van U tot de brandpunten 5-a+5+a=10 is, en de som van de afstanden van D tot de brandpunten constant, is ook de som van de afstanden van V tot de brandpunten gelijk aan 10.
Dus 2·Ö(a2+16) = 10. Hieruit volgt a=3, dus F(3,0).

Uit de alternatieve vergelijking voor E volgt dat elk punt van E is te schrijven als D(5·cos(t),4·sin(t)) voor zekere t.
De afstand van D tot F is Ö((5·cos(t)-3)2+(4·sin(t))2) = Ö(25·cos(t)2+16·sin(t)2+9-30·cos(t)) = Ö(9·cos(t)2+25-30·cos(t)) = Ö((3·cos(t)-5)2) = 5-3·cos(t).
De afstand van D tot d is 25/3 - 5·cos(t).
De verhouding van de afstanden is dus (5-3·cos(t))/(25/3 - 5·cos(t)) = 3/5.


woensdag 15 april 2009

©2001-2024 WisFaq