Logaritmische vergelijking
2log(3x)=3log(2x) log(3x)/log(2)=log(2x)/log(3) log(3)+log(x)/log(2)=log(2)+log(x)/log(3) log(3)/log(2)-log(2)/log(3)=log(x)/log(3)-log(x)/log(2) 0,954032747=(log(x)(1/log(3)-1/log(2)) 0,954032747·(log(3)-log(2))=log(x) 0.954032747·0,176091259=log(x) 10^(0,167996828)=x x=1,472301749 ingevuld in de oorspronkelijke vergelijking is niet juist. Kunt U mij verder meehelpen? Alvast bedankt. Vriendelijke groeten.
oresti
3de graad ASO - zondag 3 februari 2008
Antwoord
log(3x)/log(2)=log(2x)/log(3) log(3)+log(x)/log(2)=log(2)+log(x)/log(3) =haakjes vergeten log(3)/log(2)-log(2)/log(3)=log(x)/log(3)-log(x)/log(2) = klopt wel 0,954032747=(log(x)(1/log(3)-1/log(2)) 0,954032747·(log(3)-log(2))=log(x) = dit klopt niet 0.954032747·0,176091259=log(x) wellicht handiger? (log(3)/log(2)-log(2)/log(3)=log(x)/log(3)-log(x)/log(2) log(3)·log(3)-log(2)·log(2)=(log(2)-log(3))·log(x) log(27/4)=log(2/3)·log(x) groet. oscar
os
zondag 3 februari 2008
©2001-2024 WisFaq
|