\require{AMSmath}
WisFaq - de digitale vraagbaak voor wiskunde en wiskunde onderwijs


Printen

Hoe bepaal ik de richtingsvector?

Hoi!
Hoe bepaal je de richtingsvector van een gegeven lijn. In mijn opdracht staat dat de richtingsvector van de lijn 2x+y=0 (-1 boven 2) moet zijn. Ik begrijp niet precies hoe ze hieraan komen. Ik heb gelezen in een andere vraag over de richtingsvector dat y=ax+b de richtingsvector (1,a) oplevert, maar waarom is dit zo?
Alvast bedankt!
Birgit

Birgit
Student universiteit - zondag 16 september 2007

Antwoord

Beste Birgit,

Bekijk richtingsvector eens.

Een richtingsvector geeft alleen een richting aan. De grootte is dan niet belangrijk. De richting van een rechte lijn y=ax+b wordt bepaald door de rico = a.

Als vector geef je die aan met de getallen (1,a). Eén stapje in de x-richting en a stapjes in de y-richting.

Je zou ook kunnen zeggen (2,2a). Dan is de richting hetzeflde, maar we geven liefst zo eenvoudig mogelijke getallen.

De lijn gegeven door 2x+y=0 kan je herschrijven tot y=-2x.
De richtingscoëfficiënt (rico)=-2.
Richtingsvector dus (1,-2) of (-1,2)
Bij een richting mag je steeds beide getallen door eenzelfde getal delen of vermenigvuldigen, dat verandert niets aan de richting Alleen de verhouding is belangrijk.
1/-2=-1/2
Zo duidelijk??

ldr
zondag 16 september 2007

©2001-2024 WisFaq